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summary

Missing data presents a common challenge for researchers and data scientists,
prompting the use of multiple imputations by chained equations in epidemiologic
research. This method is highly favored for its practicality and reliable aptitude
to generate unbiased effect estimates and make valid inferences. When employing
multiple imputation by chained equations, researchers can choose from various im-
putation techniques, both parametric and nonparametric. Recent studies indicate
that nonparametric tree-based methods may outperform parametric approaches,
especially when dealing with interactions or nonlinear effects among predictor
variables. Yet, these comparisons can be misleading if the parametric model does
not include all effects present in the final analysis model, including interactions.
Based on simulation results, it has been shown that integrating interactions into
the parametric imputation model enhances its effectiveness in handling missing
binary outcomes. While parametric imputation generally results in lower bias and
slightly higher coverage probability for interaction effects, it tends to yield wider
confidence intervals compared to tree-based methods, such as classification and
regression trees. Furthermore, parametric imputation requires careful specifica-
tion of the imputation model. Epidemiologists must be diligent in defining their
imputation models within multiple imputations by chained equations. This study
contributes to the field by offering a balanced comparison between parametric and
tree-based imputation methods for data sets featuring binary outcomes.
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1 Introduction

Effectively addressing missing data is a major challenge for researchers in epidemiology, as it can

stem from issues like survey nonresponse, data collection errors, or participant loss in longitudi-

nal studies. If not managed properly, missing data can result in biased estimates and weakened

statistical power. To maintain the integrity of analyses, researchers must use suitable methods to

handle these gaps. Multiple Imputation (MI) has become a favored technique across various fields,

including epidemiology and the social sciences. MI generates multiple plausible values for missing

data based on observed data, analyzes each completed dataset, and combines the results for final

estimates. It is particularly effective for missing data that is missing at random (MAR) or missing

completely at random (MCAR), with the distinction between these two types being important for

selecting the right handling method. MCAR refers to cases where the likelihood of missing data

is unrelated to both observed and unobserved data. In other words, the missingness does not de-

pend on any known or unknown information. For instance, if survey respondents fail to answer a

question due to a system malfunction, this would be considered MCAR because the missingness

is purely random and not related to any specific variables in the dataset. On the other hand,

Missing at Random (MAR) refers to cases where the probability of data being missing depends on

the observed data, but not on the unobserved data. For example, in a study investigating health

outcomes, if patients with higher levels of income are less likely to report certain lifestyle factors,

the missingness is dependent on income (an observed variable) but not on the unreported lifestyle

data itself. MI is particularly effective in addressing both MAR and MCAR data because it utilizes

observed patterns to generate plausible values for missing data, allowing for more accurate and

unbiased results. Importantly, the MI technique enables researchers to account for the uncertainty

introduced by missing data by generating multiple imputations. This not only provides more reli-

able estimates but also allows for valid statistical inference, as it incorporates variability across the

multiple imputed datasets. By combining the results from these datasets using Rubin’s rules, MI

helps produce more precise estimates of the parameters of interest, along with proper measures of

uncertainty. While MI is a powerful tool, its effectiveness relies on the assumption that the missing

data mechanism falls within the MAR or MCAR categories. If data is missing in a non-random

manner (i.e., Missing Not at Random, or MNAR), MI may not fully correct for biases. In such

cases, alternative strategies, such as sensitivity analysis or model extensions, may be necessary to

assess the potential impact of the missing data (see [1], [2], [3]).

The Multiple Imputation by Chained Equations (MICE) method, also known as fully con-

ditional specification, is a commonly utilized technique for handling missing data [4], [5]. This

algorithm, which is a Gibbs Sampler and Bayesian simulation approach, generates random draws

from a predictive model while considering all other variables, and performs univariate imputations

sequentially until convergence is reached. One of the main advantages of MICE is that it does not

require the specification of a joint distribution for all variables. However, it is crucial to ensure
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that the imputation model is compatible with the final analysis model to avoid biased parameter

estimates and invalid inferences [6]. Default software for MICE typically includes each variable

as a linear predictor in the imputation model without considering interactions or nonlinearities.

This may lead to biased parameter estimations, especially in cases where there are interactions

between variables [7], [8], [9]. In such scenarios where including interactions in a parametric impu-

tation model is not feasible, recursive partitioning methods like Classification and Regression Trees

(CART) and Random Forests (RF) can be incorporated into the MICE algorithm [10]. By utilizing

tree-based methods, MICE can effectively handle situations with numerous predictors, small sample

sizes, or highly correlated predictors.

The advantages of CART and RF lie in their nonparametric nature, eliminating the need for

users to specify an imputation model. These models are also flexible in capturing interaction effects

and non-linear relationships. In the MICE algorithm, missing values are imputed by constructing a

tree with all other variables as predictors for incomplete variables. While tree-based methods may

pose challenges in result interpretation, this is insignificant in the imputation process, where the

main goal is to maintain the data structure for unbiased parameter estimates and valid inferences

[10], [11], [12]. This study seeks to evaluate the effectiveness of partially parametric imputation

methods in comparison to recursive partitioning methods in two simulation studies with binary

outcomes as a measure of performance.

The main goal is to determine which imputation method within the MICE algorithm is more

effective in preserving interaction effects. The paper is structured as follows: it begins by detailing

the simulation designs, followed by the presentation of four MICE imputation methods used in the

investigation of preserving interaction effects. Finally, the findings from the simulation studies are

deliberated in the concluding section.

2 Materials and Methods

2.1 Scenarios

We carried out a simulation study to evaluate the efficacy of parametric and tree-based imputation

methods, utilizing data sourced from two distinct models for comparison. For each pairing of

the data generation model and imputation method, we executed a systematic process consisting

of the following steps: data generation, deletion of observations according to missing at random

(MAR) and missing completely at random (MCAR) criteria, imputation, logistic regression analysis,

and assessment of Bias, Coverage Probability (CP), and Confidence Interval (CI) width for each

coefficient. A high-quality imputation method should exhibit minimal Bias, a Cross-Validation

Prediction of at least 95%, and precise Confidence Intervals. In addition, we computed both

model-based and empirical Standard Error (SE) values – the former representing the average SE

estimated across simulations, and the latter indicating the Standard Deviation of the estimates.

We also determined the proportion of variance attributable to missing data (λ̂), which is given in

the following sections.
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2.2 Data generation

A rigorous examination was carried out by creating 1000 simulated datasets, each consisting of 1000

observations Two logistic regression models were employed in this study, with one model incorpo-

rating an interaction term between two continuous variables, and the other model incorporating an

interaction term between two binary variables. These specific models are given in equations 1 and

2, respectively.

log it[P (Y1 = 1)] = β0 + β1Z1 + β2Z2 + a1X1 + a2X2 + a3X3 + a4X4 + a5X5 + a6X1X2, (2.1)

log it[P (Y2 = 1)] = γ0 + γ1Z1 + γ2Z2 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + γ3Z1Z2. (2.2)

The dataset was generated from a multivariate normal distribution with a mean of 0 and a standard

deviation of 1 for each of the five continuous variables X1 to X5. The correlation structure included

correlations of 0.5 between X1 and X2, X1 and X3, and X2 and X3, and a correlation of 0.3 between

X4 and X5, with a correlation of 0 between X3 and X4. Additionally, two binary variables, Z1

and Z2, were randomly drawn from a binomial distribution. Model parameters were set such that

intercepts (β0) were zero, β1, β2, γ1, and γ2 were 0.25, and a1 to a5, b1 to b5 were 0.5, with a6 and

γ3 equal to 1.

2.3 Removal of observations

The removal of observations refers to the process of deleting or excluding certain data points from

a dataset to improve the accuracy and reliability of the analysis. This may be necessary if the

observations are deemed to be outliers, errors, or otherwise skewing the results. By removing

these problematic observations, researchers can ensure that their conclusions are based on more

representative and trustworthy data. However, it is important to be transparent about the criteria

used for removal and to consider the potential impact on the overall validity of the findings. In

this study, for each data set, we introduced missing values through missing at random (MAR) and

missing at random (MCAR) mechanisms, which resulted in different proportions of missing data

for the outcome variable: 10, 20, 30, 40, and 50 percent.

2.4 Imputation of missing data

The imputation of missing data is a common technique used in statistics to deal with missing or

incomplete data in a dataset. This process involves estimating or predicting the missing values

based on the information available in the dataset. Imputation can help to reduce bias, improve

the accuracy of statistical analyses, and maintain the sample size of the dataset. There are various

methods for imputing missing data, such as mean imputation, regression imputation, and multiple

imputation. It is important to consider the assumptions and limitations of the imputation method

chosen, as well as the potential impact on the results of the analysis. Overall, imputation is a

valuable tool for handling missing data and ensuring the robustness of statistical analyses.

During the analysis, we conducted Multiple Imputations by Chained Equations (MICE) using

the mice package in R version 3.1.0 [5], [13]. Missing values were imputed in each simulated dataset

using various methods within the MICE algorithm, including Predictive Mean Matching (PMM)
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with an interaction term (MICE-Interaction), Classification and Regression Trees (CART), and

Random Forest (RF). In the following parts, we briefly describe each of the methods.

2.4.1 Predictive Mean Matching (PMM) method

To fill in missing values, the PMM method begins by analyzing a parametric model to locate cases

with comparable predictive means, and then randomly selects an observed value from this group

of similar subjects [14]. PMM is generally favored over traditional regression because it generates

imputations from the available data, preserving data structure like skewness and preventing issues

like unrealistic imputations [9], [15]. The standard implementation of PMM in the mice package

includes only the main effects in the imputation model. More information on the conventional

PMM method can be found in reference [12].

2.4.2 MICE-Interaction

The key distinction between MICE-Interaction and PMM (MICE-PMM) lies in the incorporation of

an interaction term within the imputation model for MICE-Interaction. Specifically, the interaction

term was included as an additional variable in the MICE-Interaction approach, with the default

predictor matrix being utilized within the mice function [16], [17].

2.4.3 CART and MICE-CART

CART is a sophisticated tree-based imputation method that removes the necessity of defining an

imputation model. Essentially, this technique constructs a decision tree by utilizing binary decision

rules and a single predictor variable to split the data into two nodes, consequently reducing the

variance of the outcome within each node. This process involves using predictors to classify subjects

based on the outcome. The subgroups are determined by the optimal split, typically measured using

the Gini index [18]. To prevent overfitting, the partitioning occurs until a specific criterion is met,

such as a set number of observations in the final subsets [18], [19].

The dataset Y is divided into Y obs and Y miss, where Y obs contains fully observed columns

and Y miss includes partially observed columns. The MICE-CART procedure follows these steps

when imputing incomplete variables (with k representing the number of incomplete variables, and

Ẏ representing the current imputed data matrix Y ) [11]:

1. The initial values of Yj for j = 1, . . . , k, are randomly sampled from Y obs
j , creating a data

matrix Z.

2. The CART model is applied to each missing response variable Y miss
j by using the remaining

variables in Z as predictors. Only subjects with observed values for Y miss
j are included in

this modeling process.

3. For individuals in the group Y miss
j , the terminal node is identified based on the decision tree

fitted in step 2. An observed value for Y miss
j is randomly chosen from the subset within this

node and utilized for imputation.

4. Steps 2 and 3 are repeated several times. This process is done for each variable that has

missing values to obtain a complete data set.
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5. Repeat steps 1-4 [12].

We utilized the rpart package to implement the Classification and Regression Trees (CART)

algorithm in Multiple Imputation by Chained Equations (MICE), setting a complexity parameter

of 10−4 and requiring a minimum of five observations at each terminal node [5], [20].

2.4.4 Random Forest (RF) and MICE-RF

The RF is a robust supervised machine learning algorithm known for its ability to construct re-

cursively partitioned trees without the need for pruning [21]. Considered an enhancement of the

Classification and Regression Trees (CART) algorithm, RF generates multiple trees by randomly

selecting samples with replacements from the initial dataset. To address potential overfitting, RF

incorporates a random selection of variables at each node to identify the optimal split. In the RF

imputation method, multiple regression trees are built by randomly selecting B bootstrap samples

from the original data. A subset of independent variables is randomly chosen for each split, and a

tree is built using the CART algorithm.

When applying this method in the Multiple Imputation by Chained Equations (MICE) frame-

work, B bootstrap samples are first generated, and a tree is fitted on each sample. Within each

tree, leaves contain donors for the missing values of variable j.

For a missing value Y miss
j , a random value is selected from the donors in the leaf associated

with that value. This process is repeated for each variable with missing data to create a complete

observation set. The remainder of the imputation process follows the same principles as the CART

method in MICE [12].

In our study, we utilized the mice package to incorporate RF into the MICE framework [5]. We

used 10 bootstrap samples and one-third of the predictors for each split candidate [5], [12]. While

we did not vary the number of trees (ntree), previous research indicates that the imputation quality

is consistent between ntree = 10 and ntree = 100.

3 Regression Analysis

For each of the 1000 imputed datasets, a final analysis model was accurately fitted, and the combined

results were synthesized using Rubin’s rules [?].

3.1 Calculation of Bias, CP, and CI width

We calculated Bias as the difference between the estimated coefficient and the true value. The

Confidence Probability (CP) is 0 if the 95% CI does not contain the true value, and 1 if it does.

Average Confidence Interval Length (AL) measures the width of the 95% CI for each coefficient.

We repeated Steps 1 to 5 10,000 times and reported the mean Bias, CP, and CI width across the

replications for each imputation method. Additionally, we include the empirical standard error for

each coefficient, which is the SD of the estimates across 1,000 simulation replications. The source

code for this simulation can be found in the supplementary material [12].
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4 Results

Scenario 1 (Interaction between two continuous variables)

Scenario 1 entails a study of moderate complexity involving a genuine interaction. Table 1

displays the Biases observed across 1000 replications, while Tables 2 and 3 present the Coverage

Probability (CP) and average 95% confidence interval (CI) width for each imputation method.

It is noted that MICE-Stratified produces estimates with a higher mean Bias for the interaction

effect when compared to tree-based methods. Interestingly, MICE-Stratified shows the smallest CP

values for interaction effects at each missing percentage, indicating its limitations under the MAR

mechanism.

On the other hand, MICE-Interaction, which incorporates the interaction term in the impu-

tation model, exhibits lower mean Bias and higher CP (>99.0%) for the interaction effect across

all missing percentages compared to tree-based methods. Including the interaction term in the

parametric imputation model is essential for accurate estimation of a true interaction effect, pre-

venting significant Bias and ensuring high CP. For main effects, MICE-Interaction performs well

with small Bias and CP >0.95 at all missing percentages. However, RF and CART at 10% and

20% missing percentages show higher mean Bias than MICE-Interaction but achieve at least 95%

CP with narrower 95% CIs. The widths of the coefficient distributions in Table 3 help to explain

this phenomenon, as they show that RF and CART methods have narrower Bias widths compared

to MICE-Interaction when missing percentages are below 30%.

While the MICE-Interaction method maintains CP values >0.95, recursive partitioning meth-

ods fall below this threshold for 40% and 50% missing percentages. MICE-Stratified also shows CP

values below 0.95 for most effects. Instead of relying solely on mean Bias, it is crucial to consider

measures such as standard error of the coefficient and empirical standard error to evaluate preci-

sion accurately. Additionally, for interaction between continuous variables, CART exhibits smaller

standard errors than MICE-Interaction and MICE-RF.

Following Emily Slade’s research [9], we explored tree-based tuning parameters and found that

default values are appropriate for CART. Reducing the “minbucket” values resulted in a slight

decrease in mean bias, however, we found the default value of 5 to be a suitable choice. We chose

not to adjust the number of trees (ntree) in our analysis, as previous simulations indicated that

imputation quality remains consistent between ntree values of 10 and 100. Additionally, the per-

formance of decision trees (CART) and random forests (RF) did not show significant improvement

when modifying tuning parameters. Therefore, according to [9], we present our results using the

default tuning parameters, where

cp = 10−4, minbucket = 5, mtry = 1

Scenario 2 (Interaction between two binary variables)

We then proceeded to examine the interaction term between two binary variables in the imputa-

tion model, specifically in Scenario 2. In Scenario 2, Table 3 presents the CP width corresponding to

each assignment method. Overall, the Bias values for the MICE-Interaction method were observed

to be lower compared to other methods. Recursive partitioning methods tended to underestimate
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all coefficients except for one of the main effects. As expected, the mean Bias values generally in-

creased with the proportion of missing values, although there were some exceptions. Particularly, for

interactions, recursive partitioning methods generated Bias values exceeding 0.05. Significant bias

values were observed for recursive partitioning methods, exceeding 0.40 in cases of missing data at

percentages of 40% and 50%. In terms of estimating the main effects, the MICE-Interaction method

exhibited the least Bias among the four methods. Among the two recursive partitioning methods,

CART showed lower Bias values for the main coefficients. The CP values for the MICE-Stratified

method were consistently low across most scenarios, especially under the MCAR mechanism. On

the other hand, the CP values for the MICE-Interaction method were at least 0.95. For missing

percentages above 40%, the CP values for recursive partitioning methods fell below 0.95. Despite

the MICE-Stratified method having the shortest CI length, lowest standard error, and ratio of

variations, it was not deemed an acceptable model due to the values of Bias, relative Bias, and CP.

5 Numerical Illustration

Two recursive partitioning techniques, namely CART and RF, were compared with the compati-

ble parametric model, MICE-Interaction, to assess their ability to preserve interactions and main

effects. Simulated datasets were used, featuring a binary outcome and a mix of continuous and

binary predictors. The results showed that, across all missing percentages, MICE-Interaction out-

performed the tree-based methods in estimating the true interaction effect, exhibiting lower mean

Bias and higher CP. When the true interaction term was omitted from the parametric imputation

model, it led to the largest mean Bias and the smallest CP [9].

Recent studies have indicated that the parametric imputation model performs better than

nonparametric methods like CART and RF [9] when the imputation model aligns with the analysis

model. However, there is a lack of research comparing these methods in binary responses with

both binary and continuous predictors. Our findings suggest that the nature of the interaction

term significantly impacts the performance of imputation methods. Specifically, MICE-Interaction

was shown to preserve the interaction effect better when two continuous variables influenced the

interaction term, displaying higher CP and lower mean Bias compared to CART and RF.

In situations where the interaction involves two continuous variables, when the primary focus is

on main effects, or when no true interaction effects exist between predictors and outcomes, RF and

CART imputations may be preferred over parametric imputation. While CART imputation had a

larger mean Bias for main effects compared to MICE-Interaction, it also yielded the narrowest 95%

CIs. This indicates that CART imputation, despite its bias, produces estimates closer to the truth

compared to other methods, making it more accurate for estimating main effects. Additionally, RF

imputation was found to generate more efficient parameter estimates than parametric imputation

in MICE.

However, MICE-Interaction imputation at times resulted in CIs with higher than nominal CP,

though still narrower than those from parametric or RF imputation. Future research could aim to

refine MICE imputations further to produce narrower, yet still reliable, CIs. This study demon-

strates several key strengths, such as the comprehensive comparison of tree-based and parametric
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imputation methods within the MICE framework. Furthermore, the use of advanced simulation

techniques to generate missing data allows for a thorough evaluation of the effectiveness of these

imputation methods under various missing data mechanisms. Some limitations include the focus

on one MAR condition, the absence of true data for comparison, and the use of a fixed sample size.

Future research should explore the misspecification of final models, consider more complex and

larger datasets, and address MNAR data with expert knowledge. Sensitivity analysis of underlying

missingness mechanisms and parameter tuning in imputation models may also be beneficial for

enhancing imputation performance.

In this study, we conducted a comprehensive comparison of parametric and tree-based im-

putation methods in the MICE algorithm, using a well-defined parametric model for a thorough

evaluation. To our knowledge, this is the first study to examine tree-based imputation in MICE

against a parametric model with a true interaction effect and a binary outcome. Our findings show

that MICE-Interaction is the preferred method for estimating interactions between two continuous

variables, as it has the lowest Bias, highest CP, and most precise 95% CIs for interaction effects

across varying levels of missing data. We observed a trade-off between tree-based and parametric

imputations for estimating main effects, particularly at missing percentages below 30%. Despite

wider 95% CIs, MICE-Interaction outperformed other methods in terms of CP for interaction ef-

fects. In cases involving interaction between two binary variables, MICE-Interaction is advised for

its low Bias and acceptable CP for interaction effects across all levels of missing data. It is impor-

tant to note that parametric imputation should only be used when there is sufficient information

to ensure all necessary interaction terms are incorporated into the imputation model.

Based on Table 1, Table 2, Table 3, it is noted that the MI performs the best overall, with low

bias, high coverage probability, and acceptable confidence interval widths across different levels of

missingness. It is the most robust method among those tested. The MCR offers a reasonable trade-

off but suffers from increasing bias and reduced coverage as missingness increases. The MRF shows

high bias and poor coverage at higher levels of missingness, indicating that it may not be suitable

for datasets with substantial missing data, especially when dealing with interactions. The MS per-

forms the worst, with significant bias, poor coverage, and potentially misleading narrow confidence

intervals. This method should generally be avoided, especially in cases of high missingness. These

observations provide clear guidance on the strengths and limitations of each method in handling

missing data. The results suggest that while MI is the most reliable approach, careful consideration

is needed when choosing a method, particularly in the presence of high levels of missing data and

complex variable interactions.

6 Conclusions

Missing data presents a significant challenge in research, prompting the adoption of multiple im-

putations by chained equations (MI) in epidemiologic studies due to its practicality and ability

to yield unbiased effect estimates. Recent investigations suggest that nonparametric tree-based

methods may outperform parametric approaches, especially with interactions or nonlinear effects

among predictors; however, this can be misleading if the parametric model lacks necessary interac-

95



tions. Simulation results indicate that incorporating these interactions enhances the effectiveness

of parametric imputation, which generally shows lower bias and slightly better coverage probability

for interaction effects but produces wider confidence intervals compared to tree-based methods.

The study emphasizes that MI consistently offers the best performance across various missingness

levels, maintaining low bias and high coverage probability, while the MCR method struggles as

missingness increases, and the MRF method shows high bias and poor performance in complex

scenarios. The MS method is the least effective, with significant bias and unreliable inferences, sug-

gesting it should be avoided in cases with substantial missing data. Overall, the findings underscore

MI’s robustness and the importance of careful method selection in data with high missingness and

complex interactions.
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Table 1: Scenario 1: Bias of each coefficient

Variable Model MAR MCAR

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

X1 MCR -0.022 -0.031 -0.056 -0.067 -0.093 -0.015 -0.031 -0.045 -0.066 -0.079

MI -0.001 0.005 0.001 0.005 0.002 0.001 0.000 0.001 0.002 0.003

MRF -0.054 -0.096 -0.142 -0.175 -0.211 -0.052 -0.099 -0.138 -0.178 -0.209

MS -0.116 -0.192 -0.255 -0.304 -0.346 -0.118 -0.204 -0.267 -0.317 -0.357

X1 ∗X2 MCR -0.057 -0.112 -0.168 -0.228 -0.281 -0.053 -0.110 -0.169 -0.230 -0.289

MI 0.000 0.001 0.006 0.006 0.006 0.003 0.006 0.002 0.009 0.008

MRF -0.119 -0.229 -0.323 -0.413 -0.494 -0.121 -0.226 -0.324 -0.413 -0.496

MS -0.231 -0.399 -0.522 -0.620 -0.703 -0.235 -0.405 -0.536 -0.638 -0.725

X2 MCR -0.018 -0.041 -0.057 -0.072 -0.093 -0.015 -0.032 -0.051 -0.065 -0.084

MI 0.001 -0.003 0.002 0.002 0.000 0.000 0.004 -0.002 0.000 0.002

MRF -0.051 -0.103 -0.140 -0.177 -0.213 -0.054 -0.099 -0.143 -0.179 -0.213

MS -0.115 -0.200 -0.258 -0.306 -0.348 -0.120 -0.206 -0.269 -0.322 -0.361

X3 MCR -0.014 -0.027 -0.036 -0.061 -0.068 -0.014 -0.027 -0.042 -0.054 -0.072

MI 0.002 0.000 0.007 0.004 0.010 -0.001 0.002 0.002 0.001 0.004

MRF -0.040 -0.077 -0.105 -0.139 -0.168 -0.041 -0.074 -0.107 -0.136 -0.164

MS -0.087 -0.156 -0.208 -0.259 -0.305 -0.086 -0.151 -0.209 -0.262 -0.307

X4 MCR -0.021 -0.036 -0.052 -0.068 -0.090 -0.011 -0.024 -0.036 -0.050 -0.061

MI -0.002 -0.001 0.001 0.002 -0.001 0.001 0.002 0.002 0.001 0.006

MRF -0.047 -0.086 -0.119 -0.154 -0.190 -0.038 -0.074 -0.107 -0.138 -0.166

MS -0.111 -0.182 -0.229 -0.272 -0.307 -0.082 -0.151 -0.208 -0.260 -0.304

X5 MCR -0.020 -0.038 -0.058 -0.075 -0.091 -0.011 -0.022 -0.036 -0.052 -0.060

MI -0.002 -0.003 -0.003 -0.003 -0.006 0.002 0.003 0.002 0.002 0.005

MRF -0.046 -0.086 -0.125 -0.159 -0.192 -0.038 -0.073 -0.106 -0.138 -0.163

MS -0.113 -0.180 -0.234 -0.274 -0.310 -0.082 -0.147 -0.208 -0.261 -0.305

Z1 MCR -0.022 -0.040 -0.065 -0.079 -0.103 -0.023 -0.046 -0.065 -0.090 -0.109

MI -0.003 -0.003 -0.004 -0.005 0.002 0.001 0.000 -0.001 -0.002 -0.007

MRF -0.026 -0.048 -0.071 -0.088 -0.108 -0.024 -0.046 -0.065 -0.090 -0.111

MS -0.043 -0.073 -0.105 -0.130 -0.151 -0.042 -0.077 -0.102 -0.129 -0.153

Z2 MCR -0.021 -0.040 -0.064 -0.073 -0.108 -0.020 -0.044 -0.058 -0.087 -0.098

MI -0.002 0.002 -0.006 0.005 -0.003 -0.001 0.000 0.006 -0.002 0.004

MRF -0.025 -0.052 -0.071 -0.097 -0.123 -0.022 -0.050 -0.071 -0.095 -0.118

MS -0.048 -0.077 -0.111 -0.136 -0.157 -0.044 -0.085 -0.107 -0.137 -0.158
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Table 2: Scenario 1: CP of each coefficient.

Variable Model MAR MCAR

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

X1 MCR 1.000 0.999 0.972 0.928 0.844 1.000 0.994 0.972 0.922 0.843

MI 1.000 1.000 1.000 0.996 0.980 1.000 1.000 0.998 0.993 0.983

MRF 1.000 0.988 0.920 0.787 0.649 1.000 0.980 0.893 0.779 0.666

MS 0.908 0.434 0.141 0.052 0.019 0.888 0.393 0.121 0.037 0.016

X1 ∗X2 MCR 0.997 0.949 0.766 0.560 0.391 0.998 0.951 0.780 0.550 0.409

MI 1.000 1.000 1.000 0.997 0.991 1.000 1.000 1.000 0.997 0.989

MRF 0.987 0.619 0.214 0.063 0.014 0.997 0.668 0.236 0.067 0.018

MS 0.338 0.006 0.000 0.000 0.000 0.311 0.004 0.000 0.000 0.000

X2 MCR 1.000 0.996 0.973 0.908 0.873 1.000 0.994 0.970 0.928 0.858

MI 1.000 1.000 0.997 0.996 0.992 1.000 1.000 0.999 0.996 0.988

MRF 1.000 0.982 0.914 0.778 0.659 1.000 0.988 0.901 0.814 0.644

MS 0.909 0.400 0.153 0.043 0.016 0.891 0.377 0.106 0.038 0.011

X3 MCR 1.000 0.997 0.972 0.936 0.886 1.000 0.999 0.983 0.927 0.858

MI 1.000 1.000 0.998 0.994 0.987 1.000 1.000 0.997 0.996 0.996

MRF 1.000 0.996 0.966 0.882 0.787 1.000 0.996 0.961 0.907 0.789

MS 0.979 0.640 0.297 0.118 0.044 0.979 0.671 0.294 0.111 0.033

X4 MCR 1.000 0.987 0.956 0.868 0.770 1.000 0.990 0.979 0.927 0.894

MI 1.000 0.999 0.999 0.987 0.988 1.000 1.000 0.999 0.997 0.983

MRF 1.000 0.971 0.911 0.723 0.558 1.000 0.987 0.920 0.821 0.707

MS 0.839 0.273 0.092 0.032 0.012 0.967 0.523 0.178 0.053 0.012

X5 MCR 1.000 0.988 0.931 0.854 0.781 1.000 0.994 0.977 0.940 0.879

MI 1.000 1.000 0.997 0.990 0.989 1.000 1.000 0.998 0.996 0.982

MRF 1.000 0.977 0.846 0.701 0.558 1.000 0.992 0.939 0.802 0.703

MS 0.826 0.292 0.071 0.024 0.008 0.962 0.533 0.151 0.047 0.006

Z1 MCR 1.000 1.000 0.993 0.984 0.961 1.000 0.999 0.991 0.980 0.962

MI 1.000 1.000 0.999 0.996 0.986 1.000 1.000 1.000 0.988 0.984

MRF 1.000 0.999 0.999 0.993 0.990 1.000 1.000 0.998 0.991 0.986

MS 1.000 0.992 0.954 0.930 0.909 0.999 0.989 0.956 0.926 0.899

Z2 MCR 1.000 1.000 0.997 0.981 0.968 1.000 0.999 0.997 0.986 0.969

MI 1.000 1.000 0.998 0.993 0.990 1.000 1.000 1.000 0.994 0.987

MRF 1.000 1.000 0.999 0.994 0.989 1.000 1.000 0.998 0.996 0.990

MS 1.000 0.989 0.954 0.914 0.890 1.000 0.976 0.952 0.931 0.891
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Table 3: Scenario 1: 95% CI width of each coefficient.

Variable Model MAR MCAR

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

X1 MCR 0.421 0.437 0.447 0.461 0.473 0.424 0.440 0.455 0.467 0.478

MI 0.435 0.467 0.515 0.566 0.644 0.438 0.476 0.520 0.587 0.670

MRF 0.433 0.452 0.472 0.481 0.496 0.435 0.459 0.476 0.487 0.502

MS 0.381 0.367 0.362 0.363 0.370 0.383 0.371 0.366 0.367 0.371

X1 ∗X2 MCR 0.460 0.481 0.490 0.500 0.499 0.465 0.482 0.498 0.504 0.514

MI 0.467 0.501 0.547 0.610 0.674 0.472 0.513 0.566 0.627 0.738

MRF 0.484 0.514 0.517 0.516 0.510 0.489 0.516 0.526 0.525 0.525

MS 0.387 0.358 0.341 0.329 0.320 0.391 0.364 0.345 0.333 0.326

X2 MCR 0.422 0.436 0.450 0.464 0.476 0.425 0.438 0.456 0.464 0.479

MI 0.434 0.467 0.512 0.578 0.647 0.438 0.476 0.528 0.584 0.673

MRF 0.432 0.454 0.471 0.488 0.497 0.436 0.459 0.472 0.490 0.502

MS 0.381 0.367 0.362 0.362 0.369 0.383 0.370 0.365 0.367 0.372

X3 MCR 0.392 0.405 0.418 0.428 0.444 0.393 0.408 0.417 0.433 0.442

MI 0.403 0.435 0.476 0.532 0.619 0.405 0.440 0.487 0.546 0.613

MRF 0.399 0.417 0.437 0.456 0.478 0.401 0.420 0.441 0.457 0.471

MS 0.361 0.352 0.351 0.354 0.363 0.363 0.357 0.356 0.358 0.365

X4 MCR 0.343 0.354 0.365 0.376 0.385 0.341 0.353 0.365 0.374 0.385

MI 0.355 0.386 0.431 0.478 0.549 0.351 0.382 0.419 0.468 0.532

MRF 0.352 0.371 0.387 0.395 0.412 0.347 0.364 0.379 0.397 0.416

MS 0.311 0.304 0.304 0.306 0.312 0.314 0.308 0.305 0.310 0.315

X5 MCR 0.342 0.355 0.364 0.375 0.384 0.341 0.354 0.365 0.374 0.386

MI 0.354 0.387 0.432 0.484 0.553 0.352 0.381 0.422 0.469 0.533

MRF 0.353 0.370 0.383 0.397 0.409 0.347 0.366 0.381 0.395 0.413

MS 0.311 0.304 0.303 0.306 0.314 0.314 0.307 0.305 0.309 0.314

Z1 MCR 0.618 0.639 0.658 0.675 0.691 0.621 0.642 0.661 0.679 0.706

MI 0.636 0.689 0.760 0.850 0.967 0.642 0.698 0.768 0.860 0.992

MRF 0.629 0.659 0.687 0.716 0.750 0.632 0.664 0.702 0.725 0.764

MS 0.576 0.566 0.565 0.573 0.587 0.580 0.571 0.572 0.581 0.595

Z2 MCR 0.620 0.637 0.657 0.675 0.694 0.621 0.642 0.661 0.681 0.706

MI 0.640 0.689 0.756 0.848 0.948 0.643 0.702 0.774 0.851 0.977

MRF 0.630 0.657 0.687 0.715 0.752 0.635 0.664 0.700 0.730 0.758

MS 0.576 0.566 0.566 0.574 0.588 0.580 0.572 0.572 0.580 0.596
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